Bayesian Structural Inference for Hidden Processes
نویسندگان
چکیده
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ε-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ε-machines, irrespective of estimated transition probabilities. Properties of ε-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
منابع مشابه
Dynamic Nonparametric Bayesian Models And the Birth-Death Process
When modeling longitudinal data using a set of hidden processes such as state-space models, a common assumption is that the number of hidden processes is fixed, and all hidden processes have the same life span (i.e., all start at the onset of the data stream and terminate at the end of the data stream). In this report I outline a framework of modeling complex longitudinal data using a birth-dea...
متن کاملStochastic Variational Inference for HMMs, HSMMs, and Nonparametric Extensions
Hierarchical Bayesian time series models can be applied to complex data in many domains, including data arising from behavior and motion [32, 33], home energy consumption [60], physiological signals [69], single-molecule biophysics [71], brain-machine interfaces [54], and natural language and text [44, 70]. However, for many of these applications there are very large and growing datasets, and s...
متن کاملCollapsed Variational Bayesian Inference for Hidden Markov Models
Approximate inference for Bayesian models is dominated by two approaches, variational Bayesian inference and Markov Chain Monte Carlo. Both approaches have their own advantages and disadvantages, and they can complement each other. Recently researchers have proposed collapsed variational Bayesian inference to combine the advantages of both. Such inference methods have been successful in several...
متن کاملSpeeding Up Inference in Markovian Models
Sequential statistical models such as dynamic Bayesian networks and hidden Markov models more specifically, model stochastic processes over time. In this paper, we study for these models the effect of consecutive similar observations on the posterior probability distribution of the represented process. We show that, given such observations, the posterior distribution converges to a limit distri...
متن کاملBayesian Inference on a Cox Process Associated with a Dirichlet Process
In ecology and epidemiology, spatio-temporal distributions of events can be described by Cox processes. Situations for which there exists a hidden process which contributes to random effects on the intensity of the observed Cox process are considered. The observed process is a generalized shot noise Cox process and the hidden process is a Poisson process associated with a Dirichlet process. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014